o microtact hydraulic

 Excellence In Ffuid Control

Hydraulic Cylinders

- Standard Cylinders
- Tie Rod Cylinders
- Custom Built Cylinders

Company Profile

Microtact a leading name in Hydraulic Valves and Systems worldwide, has deliveries across the globe. Microtact has good knowledge of the needs of the customers, with a tradition of quality and service that spans many decades.
We are a ISO 9001 Company, ensuring the quality standards as per International Standards and Specifications.
We at Microtact, guarantee our customers the international experience, reliability and back-up in providing solutions which are both most effective and cost-effective.
Microtact products means more than Three Decades of experience, innovative product development, high quality standards, application know-how and prompt service back-up to all customers.

Infrastructure

SERIES - HC/HCT/CHC

Standard Hydraulic cylinders :Single Acting, Double Acting \& Plunger Cylinders

- Tie Rod Cylinders :- Double Acting
- Custom built Cylinders

KEY FEATURES

1. ISO 6020-1, ISO 6020-2
2. Superior high quality chrome plated Rod
3. Honed \& finished steel tube
4. State of the art manufacturing
5. Extremely robust design
6. Minimum wear \& tear.
7. Top quality seals
8. High tensile strength tie rods

Basic Characteristics

Continuous speed $=$ Max $0.2 \mathrm{~m} / \mathrm{s}$
Top speed $=$ Max $0.5 \mathrm{~m} / \mathrm{s}$
Operating pressure $=160 \mathrm{bar}$
Peak Pressure
Standard Cylinders = Max. 200 bar
Tie Rod Standard Cylinders $=$ Max. 250 bar
Temperature range $=-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Available strokes $=50-300 \mathrm{~mm}$

ORDERING INFORMATION

1. ${ }^{*}-\mathrm{C}=$ Custom Built Cylinder (omit if not required)
$\mathrm{HC}=$ Standard Cylinder
*- T = Tie Rod cylinder (omit if not required)
2. SA $=$ Single Acting Type

DA = Double Acting Type
PC = Plunger Type
3. * = Cylinder Bore
4. * = Piston Rod Diameter
5. * = Stroke Length
6. * = Type of Mounting
(Mounting Options are not applicable for Single Acting Cylinders)

- Standard Without Mounting = S
- End Plug Mounting = P - with cross hole
(P applicable only for plunger cylinders)
-Bush Mounting = B1 - One end bush mounted.
B2 - Both end bush mounted.
(Not applicable for Tie rod cylinder)

-Clevis Mounting =	C1 - Female Clevis Mounted C2 - Male Clevis Mounting (C1 \& C2 only for Tie rod cylinders)
-Rod Eye Mounting =	E - Both end Rod Eye Mounted. (Not applicable for Tie rod cylinders)
-Fork Mounting =	F - Both end Fork Mounted. (Not applicable for Tie rod cylinders)
-Flange Mounting =	L1 - Front Flange Mounted L2 - Rear Flange Mounted (L1 applicable for Tie rod \& std. DA Cylinders) (L2 applicable only for Tie rod cylinders)
-Threaded Mounting $=$	= T1 - Front \& Back Tie Rod mounting T2 - Back Tie Rod Mounting T3 - Front Tie Rod Mounting T4 - Front Threaded Holes Mounting T5 - Back Threaded Holes Mounting (applicable only for Tie rod cylinders)
Feet Mounting	=FT - Side Feet Mounting (Tie rod cylinder)
$\text { 7. } \begin{aligned} * & \text { Port Thread - } \\ & B-B S P, N-N F \end{aligned}$	

Typical Model Code
Standard Cylinder
Tie Rod Cylinder
HC - DA - 40-25-150 - S - B
HC - PC - 50-30-200-S - B
Custom built Cylinder
НСТ - DA - 40-20-100-C1 - B
CHC - DA - 40-20-100 - B1 - B

Microtact Hydraulic cylinders are designed and manufactured according to the standards: ISO 6020-1, ISO 6020-2 All cylinders manufactured according to these standards have a unified installation measurement as per the stroke to ease replacement. Cylinders are primarily intended for the automization of work processes (processing machines and other servohydraulic drives), and they are also the best solution for systems where a simple exchangeability of components is required since the cylinders are designed modularly. When designing them special attention is paid to simple servicing without special tools that makes servicing faster and more economical.

A hydraulic cylinder is the actuator or "motor" side of a system. The "generator" side of the system is the hydraulic pump which brings in a fixed or regulated flow of oil to the hydraulic cylinder, to move the piston. The piston pushes the oil in the other chamber back to the reservoir. If we assume that the oil enters from cap end, during extension stroke, and the oil pressure in the rod end / head end is approximately zero, the force F on the piston rod equals the pressure P in the cylinder times the piston area $A: F=P^{*} A$

During a retraction stroke if oil is pumped into the rod end / head end and the oil from the cap end flows back to the reservoir without pressure.

The fluid pressure in the rod end is (Pull Force) / (piston area - piston rod area):where P is the fluid pressure, F_{p} is the pulling force, A_{p} is the piston face area and A_{r}

$$
P=\frac{F_{p}}{A_{p}-A_{r}}
$$ is the rod cross-section area.

Hydraulic cylinders are powered from pressurized hydraulic fluid, which is typically oil. The hydraulic cylinder consists of a cylinder barrel, in which a piston connected to a piston rod moves back and front. The barrel is closed on one end by the cylinder bottom (also called the cap) and the other end by the cylinder head (also called the gland) where the piston rod comes out of the cylinder. The piston has sliding rings and seals. The piston divides the inside of the cylinder into two chambers, the bottom chamber (cap end) and the piston rod side chamber (rod end/head end)

Seals on the cylinders are chosen in compliance with the ISO standards, which provides independence from seal manufacturers. seals for operating environments with higher temperatures are also offered. All manufactured cylinders are tested in compliance with ISO standard which provides for repeatable quality.

Standard cylinders have an operating pressure of 160 bars and maximum pressure is 250 bars. It enables the final damping as well. It is also possible to order ISO cylinders that are designed in compliance with your requirements (various dimensions, various speeds etc.)

Flanges, clevises, Bush, Rod eye, fork are common cylinder mounting options. The piston rod also has mounting attachments to connect the cylinder to the object or machine component that it is pushing / pulling.

The majority of our hydraulic cylinders is suitable for use within the temperature range between $-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. Operating pressure varies according to the product. Piston speed is very different depending upon the installation length, treatment, material and desired execution.

Single Acting Hydraulic Cylinders

Single acting cylinders are economical and the simplest design. The working mode of cylinders with single acting operation is very simple. The supply of hydraulic fluid is implemented only on one side, which is why it can be operated only unilaterally. The return movement in this procedure is usually performed by a spring and sometimes also by its own weight if the force is not too great. A cylinder with single acting operation can usually be operated using a diverting valve. Operation using correct and appropriate components is also possible.

The most important advantage of cylinders with a Single Acting operation are:

- Smaller moving force,
- Small installation length,
- Small force of the return movement.

Hydraulic cylinders with the single acting operation do not depend on electricity and are used particularly for simple tasks like operating flaps or doors, ejection devices or drawers.

Plunger Type Cylinders

A hydraulic cylinder without a piston or piston without seals is called a plunger cylinder. A plunger cylinder can only be used as a pushing cylinder. The maximum force is a piston rod area multiplied by the pressure. This means that a plunger cylinder in general has a relatively thick piston rod

Double Acting Hydraulic Cylinders

Hydraulic cylinders with double acting operation have two opposite facing piston surfaces that control the operation of the force of hydraulic liquid, i.e. usually a special hydraulic oil that enables two active moving directions. The hydraulic energy is converted through the hydraulic liquid into the mechanical energy for the movement of the pistons. The pistons usually have
separate connections that enable active movement in both directions. The force is thus applied in both directions and the structure of this hydraulic cylinder is very simple.

This type of cylinder with linear movement is especially suitable for use in presses and Chippers, for opening and closing drawers and for all types of raising and lowering devices. The piston rod is attached to the piston in this structure. The piston can move faster if it has a smaller surface and slower if its surface is larger. This hydraulic cylinder is used in many types of construction machinery \& equipments.

Tie Rod Double Acting Hydraulic Cylinders

Tie Rod Cylinders are the most common on agricultural application, machine tools, automotive industries, transfer lines and manufacturing devices. The main feature of the tie rod cylinder is:space-saving compact design, which makes it particularly suitable for manufacturing devices., The top \& bottom of the tie rod cylinder, as well as the cylinder tube are connected together via rods. Extended tie rods at the head or base of the cylinder may be used to mount the tie rod cylinder. Threaded holes and subplate mounting options are also included in the wide mounting range of the tie rod cylinder. The Tie rod cylinders use 4 long high strength threaded steel rods to hold the two end caps to the cylinder tube and are fitted that run the length of the cylinder. Small bore cylinders usually have 4 tie rods, while large bore cylinders may require many tie rods in order to retain the end caps under tremendous force produced.

The National Fluid Power Association has standardized the dimensions of hydraulic Tie rod cylinders. This enables cylinders from different manufacturers to interchange within the same mounting.

The most important advantage of Tie rod cylinder operation is:

- Compact design,
- Wide mounting range,
- Limited piston diameter,
- Limited stroke length,

Connections

The cylinders are supplied as per standard with cylindrical BSP threads and spot facing for seal rings in compliance with ISO 1179. For further information and for the order identification code, please consult our technical office.

For correct cylinder operation, fluid velocity must not exceed $0.5 \mathrm{~m} / \mathrm{s}$.

Tie Rod Tightening Torque

If the cylinder has been disassembled, re-assemble it and tighten the tie rod lock nuts cross-wise applying a gradual torque up to the value indicated in the table below. The values below refer to dry threads.

Bore (mm)	40	50	63	80	100
Tie Rod	M8×1 pitch	M12 $\times 1.5$ pitch	$M 12 \times 1.5$ pitch	M16x1.5 pitch	$M 16 \times 1.5$ pitch
Torque (Nm)	20	70	70	160	160

Cushioning

On request, gradual \& adjustable cushioning devices can be fitted in the front and / or rear ends of the cylinder without affecting overall dimensions.
The special design of the cushions ensures optimal repeatability also in the event of variations in fluid viscosity.
Cushioning devices are always recommended as they ensure impact free stopping even at high speed thus reducing pressure surges and impact transferred to the mounting supports.
For all the available bores, cushioning is adjustable by means of a needle.
Rapid piston start-up is guaranteed by the bypass valves located inside the front cushioning cone \& rear cushioning ring.

Tie Rod Mounting Style - (in compliance with ISO 6020-1)

L1 (ISO ME5)
Front Flange Mounting

T1 (ISO MX1)
Front \& Back Tie Rod Mounting T2 (ISO MX2)
Back Tie Rod Mounting T3 (ISO MX3)
Front Tie Rod Mounting

Piston Rod End Type (ISO 4395)
(Standard Male Thread)

Bore \varnothing	Rod \varnothing	T	T 1	WH	S
40	18	M14x1.5	18		14
	22	M16x1.5	22	25	17
	28	M20x1.5	28		22
50	22	M16x1.5	22	26	17
	28	M20x1.5	28		
	36	M27x2	36		30
63	28	M20x1.5	28	33	22
	36	M27x2	36		
	45	M33x2	45		36
80	36	M27x2	36	31	30
	45	M33x2	45		
	56	M42x2	56		50
100	45	M33x2	45	35	36
	56	M42x2	56		
	70	M48x2	63		60

C1 (ISO MP1) Female Clevis Mounting

T5 (ISO MX6)
Back Threaded Holes Mounting

C2 (ISO MP3) Male Clevis Mounting

FT (ISO MS2) Side Feet Mounting

Female Clevis Pin (ISO 8133)

Bore \varnothing	Rod \varnothing	EK f8	EL +0 -0.2	ET
40	18 22 28	14	45	53
50	22 28 63	20	66	75
80	36 45 56	28	87	96
100	45 56 70	36	107	120

S- SINGLE ACTING STANDARD CYLINDERS (PLUNGER CYLINDER) - BASIC TYPE						
CODE	\varnothing B	\varnothing R	L	F	OP (bsp)	CL1
$\begin{aligned} & \text { HC-PC-40-30-*-S } \\ & \text { *Stroke- } 200,250,300 \end{aligned}$	40	30	130	40	3/8"	27
$\begin{aligned} & \text { HC-PC-50-40-*-S } \\ & \text { *Stroke- 200, } 300 \end{aligned}$	50	40	142	45	3/8"	30
$\begin{aligned} & \text { HC-PC-60-50-*-S } \\ & \text { *Stroke- } 300 \end{aligned}$	60	50	156	50	3/8"	36

P - SINGLE ACTING CYLINDERS (PLUNGER TYPE) WITH CROSS HOLE									
CODE	Ø B	\varnothing R	L	F	M	OP (bsp)	CL1	\varnothing B/P	Ø R1
HC-PC-30-25-*-P *Stroke-100,150,200,250,300	30	25	90	38	35	3/8"	40	14	22
$\begin{array}{\|l\|} \hline \text { HC-PC-40-30-*-P } \\ \text { *Stroke- } 200,250,300 \end{array}$	40	30	100	42	37	3/8"	42	16.2	27
$\begin{aligned} & \hline \text { HC-PC-50-40-*-P } \\ & \text { *Stroke- 200,250,300 } \end{aligned}$	50	40	130	54	49	3/8"	47	23	37
$\begin{aligned} & \hline \text { HC-PC-60-50-*-P } \\ & \text { *Stroke- } 300 \end{aligned}$	60	50	460	74	65	3/8"	60	25.5	47

L1 - FLANGE MOUNTED DOUBLE ACTING STANDARD CYLINDERS									
CODE	Ø B	Ø R	L	F	OP (bsp)	CL	CL1	Ø FD	PCD
HC-DA-40-20-*-L1 HC-DA-40-25-*-L1 *Stroke- 100,200,300	40	20	101	22	1/4"	32	20	109	87
		25							
HC-DA-50-25-*-L1	50	25	112	22	3/8"	35	26	128	105
HC-DA-50-30-*-L1		30							
*Stroke-100,200,300									
HC-DA-60-30-*-L1	60	30	130	23	3/8"	40	30	142	117
HC-DA-60-35-*-L1		35							
*Stroke-100,200,300									
HC-DA-60-40-*-L1*Stroke- 200,300		40							
$\begin{array}{\|l} \hline \text { HC-DA-70-35-*-L1 } \\ \text { *Stroke- } 100,200,300 \end{array}$	70	35	130	23	3/8"	40	33	162	127
$\begin{aligned} & \text { HC-DA-70-40-*-L1 } \\ & \text { *Stroke- 200,300 } \end{aligned}$		40	260						
HC-DA-80-40-*-L1	80	40	150	25	1/2"	50	35	181	149
HC-DA-80-50-*-L1			250						
*Stroke-100,200,300									
$\begin{aligned} & \text { HC-DA-100-50-*-L1 } \\ & \text { *Stroke- 100,200,300 } \end{aligned}$	100	50	178	25	1/2"	70	38	194	162
HC-DA-100-60-*-L1 *Stroke- 100,200,300		60							

B2-BOTH END BUSH MOUNTED DOUBLE ACTING CYLINDERS												
				$\begin{aligned} & \frac{Z+S t r}{L+S t r o} \end{aligned}$	OP							
CODE	Ø B	Ø R	L	Z	F	OP(bsp)	CL	CL1	ØB/P	Ø BH	BH1	BH2
$\begin{aligned} & \text { HC-DA-40-20-*-B2 } \\ & \text { *Stroke- } 100,150,200,250,300 \end{aligned}$	40	20	165	130	39.5	1/4"	33	40.5	16.25	35	30	60
$\begin{aligned} & \text { HC-DA-40-25-*-B2 } \\ & \text { *Stroke- } 150,200,250,300 \end{aligned}$	40	25	165	130	39.5	1/4"	40	40.5	16.25	35	30	60
HC-DA-50-25-*-B2 *Stroke- 100,150,200,250,300	50	25	180	140	43	$3 / 8 "$	43	46	20.25	40	40	70
HC-DA-50-30-*-B2 *Stroke- 150,200,250,300	50	30	180	140	43	$3 / 8 "$	43	46	20.25	40	40	70
HC-DA-60-30-**B2 *Stroke- 100,150,200,250,300		30										
HC-DA-60-35-*-B2 *Stroke- 100,150,200,250,300 HC-DA-60-40-*-B2 *Stroke- 200,250,300	60	35 40	210	160	48	3/8"	50	55	25.25	50	50	80
HC-DA-63-40-*-B2 *Stroke- 200,250,300	63	40	210	160	48	3/8"	50	55	25.25	50	50	80
HC-DA-70-35-*-B2 *Stroke- 100,150,200,250,300	70	35	210	160	48	3/8"	50	58	25.25	50	50	90
HC-DA-80-40-*-B2 HC-DA-80-50-*-B2 *Stroke- $200,250,300$	80	40	240	180	55	1/2"	60	65	30.25	60	60	110
HC-DA-100-50-*-B2 *Stroke- 200,250,300 HC-DA-100-60-*-B2 *Stroke- 300	100	50 60	280	210	60	1/2"	82	73	40.25	70	70	130

F-BOTH END FORK MOUNTED DOUBLE ACTING CYLINDERS											
							$\phi B /$ ξ			w_{1}	
CODE	\varnothing В	$\varnothing \mathrm{R}$	L	z	OP (bsp)	M	CL	CL1	Ø B/P	$\begin{aligned} & \text { SQ- } \\ & \text { BH } \end{aligned}$	w
$\begin{aligned} & \text { HC-DA-32-20-*-F } \\ & \text { *Stroke- } 50,100,150,200,250,300 \end{aligned}$	32	20	185	105	1/4"	40	33	60	20.25	40	20
$\begin{aligned} & \text { HC-DA-40-20-*-F } \\ & \text { *Stroke- } 100,150,200,250,300 \end{aligned}$	40	20	210	130	1/4"	40	33	60	20.25	40	20
HC-DA-50-25-*-F *Stroke- 100,150,200,250,300 HC-DA-50-30-*-F *Stroke- $150,200,250,300$	50	25 30	230	140	$3 / 8$ "	45	43	71	25.25	50	25
HC-DA-60-30-*-F *Stroke- 100,150,200,250,300 HC-DA-60-35-*-F $*$ HCroke- $100,150,200,250,300$ *Stroke- $200-40-*-$ F	60	30 35 40	260	160	3/8"	50	50	80	30.25	60	30
HC-DA-63-40-*-F *Stroke- 200,250,300	63	40	260	160	3/8"	50	50	80	30.25	60	30
HC-DA-70-35-*-F *Stroke- $100,150,200,250,300$ HC-DA-70-40-*-F *Stroke- 200,250,300	70	35 40	260	160	3/8"	50	50	83	30.25	60	30
HC-DA-80-40-*-F *Stroke- 200,250,300 HC-DA-80-50-*-F *Stroke- 200,250,300	80	40 50	290	180	1/2"	55	60	90	35.25	70	35

E - BOTH END ROD- EYE MOUNTED DOUBLE ACTING CYLINDERS											
		∞ \propto $-$ -1 1$Z+9$$\llcorner+$									
CODE	øв	ØR	L	Z	F	OP (bsp)	CL	CL1	Ø B/P	BH	BH1
HC-DA-32-20-*-E *Stroke- 50,100,150,200,250,300	32	20	165	105	46	1/4"	33	50	20.25	45	25
$\begin{aligned} & \text { HC-DA-40-20-*-E } \\ & \text { *Stroke- 100,150,200,250,300 } \end{aligned}$	40	20	190	130	52	1/4"	33	50	25.25	50	25
$\begin{aligned} & \text { HC-DA-40-25-*-E } \\ & \text { *Stroke- 150,200,250,300 } \end{aligned}$	40	25	190	130	52	1/4"	40	50	25.25	45	25
HC-DA-50-25-*-E *Stroke- 100,150,200,250,300 HC-DA-50-30-*-E *Stroke- $150,200,250,300$	50	25 30	210	140	57	$3 / 8 "$	43	61	25.25	50	30
HC-DA-60-30-*-E *Stroke- 100,150,200,250,300 HC-DA-60-35-*-E *Stroke- 100,150,200,250,300 HC-DA-60-40-*-E *Stroke- 200,250,300	60	30 35 40	250	160	68	$3 / 8 "$	50	76	30.25	60	35
HC-DA-63-40-*-E *Stroke- 200,250,300	63	40	250	160	68	3/8"	50	76	30.25	60	35
HC-DA-70-35-*-E *Stroke- 100,150,200,250,300 HC-DA-70-40-*-E *Stroke- 200,250,300	70	35 40	250	160	68	$3 / 8 "$	50	78	30.25	60	35
HC-DA-80-40-*-E *Stroke- 200,250,300 HC-DA-80-50-*-E *Stroke- 200,250,300	80	40 50	290	180	80	1/4"	60	90	30.5	70	40

L1 - FRONT FLANGE MOUNTED TIE ROD DOUBLE ACTING CYLINDERS																
CODE	\varnothing в	$\varnothing_{\text {R }}$	L1	L2	FH	FH1	OP (bsp)	cL	GF	T	T1	Fw	F1	CD	CD1	øм
HCT-DA-40-28-*-L1 *Stroke- 100,150,200,250,300	40	28	153	74	45	45	3/8"	62	35	M20x1.5P	28	10	63	87	41	11
HCT-DA-50-28 *** HCT-DA- $50-36^{* *}$-L1 HStroke- $100,150,200,250,300$	50	28 36	159	76	45	45	1/2"	68	41	$\frac{M 20 \times 1.5 P}{M 27 \times 2 P}$	$\frac{28}{36}$	130	75	105	52	14
$\begin{aligned} & \text { HCT-DA-63-28**-L1 } \\ & \text { HCT-DA-63-36**L1 } \\ & \text { HCT-DA-63-45**L1 } \\ & \text { *Stroke } 150,200,250,300 \\ & \hline \end{aligned}$	63	$\begin{aligned} & \frac{28}{36} \\ & \hline 45 \\ & \hline \end{aligned}$	168	80	45	45	1/2"	71	48	$\begin{array}{\|l\|} \hline \frac{120 x 1.5 P}{} \\ \hline \mathrm{M} 27 \times 2 \mathrm{P} \\ \hline \mathrm{M} 33 \times 2 \mathrm{PP} \\ \hline \end{array}$	28 36 45	145	90	117	65	14
$\begin{array}{\|l} \hline \text { HCT-DA-80-36***1 } \\ \text { HCT-DA-80-45-*L1 } \\ \text { HCT-DA-80-56**L1 } \\ \text { *Stroke- } 150,200,250,300 \end{array}$	80	$\begin{aligned} & \frac{36}{45} \\ & \hline 56 \\ & \hline \end{aligned}$	190	93	50	52	$3 / 4 "$	77	51	$\begin{array}{\|l} \hline \text { M27x2P } \\ \hline \text { M } 3 \times 2 \times 2 \times 2 P \\ \hline \text { M42x } \end{array}$	36 45 56	180	115	149	${ }^{83}$	18
HCT-DA-100-45-**L1 HCT-DA-100-56-**L1 HCT-DA-100-70-** HA Stroke- 200, 250,300	100	$\begin{aligned} & \frac{45}{56} \\ & \hline 70 \\ & \hline \end{aligned}$	203	101	50	55	$3 / 4 "$	82	57	$\begin{array}{\|l} \hline \text { M } 33 \times 2 P \\ \hline \text { M42 } 2 \times 2 P \\ \hline \text { M48×2P } \end{array}$	45 56 70	200	130	162	97	18

L2 - REAR FLANGE MOUNTED TIE ROD DOUBLE ACTING CYLINDERS																
	CL	-1														
CODE	øв	$\varnothing \mathrm{R}$	L1	L2	FH	FH1	OP (bsp)	CL	GF	T	T1	Fw	F1	co	CD1	øмн
$\begin{array}{\|l\|} \hline \text { HCT-DA-40-28***2 } \\ \text { *Stroke- } 100,150,200,250,300 \end{array}$	40	28	153	74	55	45	3/8"	62	25	M20x1	28	110	63	87	41	11
HCT-DA-50-28-**L2 HCT-DA-50-36-**L2 *Stroke- 100,150,200,250,300	50	$\frac{28}{36}$	159	76	55	45	1/2"	68	26	$\begin{array}{\|l\|} \hline \mathrm{M} 20 \times 1.5 \mathrm{PP} \\ \hline \mathrm{M} 27 \times 2 \mathrm{P} \\ \hline \end{array}$	$\frac{28}{36}$	130	75	105	52	14
	63	28 36 45	168	80	55	45	1/2"	71	33		28 36 45	145	90	117	65	14
	80	36 45 56	190	93	65	52	$3 / 4{ }^{\prime \prime}$	77	31	$\begin{aligned} & \frac{M 27 \times 2 P}{\frac{M}{2} 33 \times 2 P} \\ & \hline \frac{M 42 \times 2 P}{} \end{aligned}$	36 45 56	180	115	149	83	18
HCT-DA-100-45***L2 HCT-DA-100-56**-L2 HCT-DA-100-70**L2 *Stroke- 200,250,300	100	$\begin{array}{\|l\|} \hline 45 \\ \hline 56 \\ \hline 70 \\ \hline \end{array}$	203	101	65	55	3/4"	82	35	$\frac{M 33 \times 2 P}{\frac{M}{4} 2 \times 2 P} \frac{\text { M }}{}$	45 56 70	200	130	162	97	18

C2 - MALE CLEVIS MOUNTED TIE ROD DOUBLE ACTING CYLINDERS

CODE	\varnothing B	$\varnothing \mathrm{R}$	L	L1	L2	FH	FH1	OP (b)	CL	GF	T	T1	F1	$\begin{array}{\|c} \hline \varnothing C D \\ \mathrm{H} 9 \end{array}$	V	MR
HCT-DA-40-28-*-C2 *Stroke- 100,150,200,250,300	40	28	172	153	74	55	45	3/8"	62	25	M20x1.5P	28	63	14	20	17
HCT-DA-50-28-*-C2		28									M20x1.5P	28				
HCT-DA-50-36-*-C2	50	36	191	159	76	55	45	1/2"	68	26	M27x2P	36	75	20	30	29
*Stroke-100,150,200,250,300																
HCT-DA-63-28-*-C2		28									M20x1.5P	28				
HCT-DA-63-36-*-C2	63	36				55	45	1/2"	71	33	M $27 \times 2 \mathrm{P}$	36		20	30	
HCT-DA-63-45-*-C2	63	45	200	168	80	55	45	$1 / 2$	71	33	M $33 \times 2 \mathrm{P}$	45	9	20	30	29
*Stroke-150,200,250,300																
HCT-DA-80-36-*-C2		36									M27x2P	36				
HCT-DA-80-45-*-C2	80	45	229	190	93	65	52	3/4"	77	31	M $33 \times 2 \mathrm{P}$	45	115	28	40	34
HCT DA 8056 * C2	80	56	229								M42 2P	56	115	28	40	34
*Stroke-150,200,250,300																
HCT-DA-100-45-*-C2		45									M $33 \times 2 \mathrm{P}$	45				
HCT-DA-100-56-*-C2		56									M42x2P	56		36		
HCT-DA-100-70-*-C2	100	70	257	203	101	65	55	3/4	82	35	M48x2P	70	130	36	50	50
*Stroke- 200,250,300																

PUSH \& PULL FORCE

CYLINDER BORE / ROD	PUSH \& PULL FORCE IN VARIOUS BAR PRESSURE									
	50 bar	75 bar	100 bar	125 bar	160 bar	50 bar	75 bar	100 bar	125 bar	160 bar
	PUSH FORCE IN kN					PULL FORCE IN kN				
30/25	3.5	5.3	7.0	8.8	11.3	1.0	1.6	2.1	2.6	3.4
32/20	4.0	6.0	8.0	10.0	12.8	2.4	3.6	4.9	6.1	7.8
40/20	6.3	9.5	12.6	15.8	20.1	4.7	7.0	9.4	11.7	15
40/25	6.3	9.5	12.6	15.8	20.1	3.8	5.7	7.7	9.6	12.2
40/30	6.3	9.5	12.6	15.8	20.1	2.7	8.4	5.4	6.8	8.7
50/25	9.8	14.7	19.6	24.5	31.4	7.3	11	14.7	18.3	23.5
50/30	9.8	14.7	19.6	24.5	31.4	6.3	9.4	12.6	15.7	20.1
50/40	9.8	14.7	19.6	24.5	31.4	3.5	5.3	7.0	8.8	11.3
60/30	14.2	21.2	28.3	35.4	45.2	10.6	15.9	21.2	26.5	33.9
60/35	14.2	21.2	28.3	35.4	45.2	9.3	14	18.7	23.3	29.8
60/40	14.2	21.2	28.3	35.4	45.2	7.8	11.7	15.7	19.6	25.1
60/50	14.2	21.2	28.3	35.4	45.2	4.3	6.4	8.6	10.7	13.8
63/40	15.5	23.3	31.1	38.9	49.8	9.3	13.9	18.6	23.2	29.7
70/35	19.2	28.8	38.5	48.1	61.5	14.4	21.6	28.9	36.1	46.1
70/40	19.2	28.8	38.5	18.1	61.5	12.9	19.4	25.9	32.3	41.4
80/40	25.1	37.7	50.3	62.8	80.4	18.8	28.2	37.7	47.1	60.3
80/50	25.1	37.7	50.3	62.8	80.4	15.3	22.9	306	38.2	49
100/50	39.2	58.8	78.5	98.1	125.6	29.4	44.1	58.9	73.6	94.2
100/60	39.2	58.8	78.5	98.1	125.6	25.1	37.6	50.2	62.8	80.4

MAINTENANCE \& TROUBLE SHOOTING

a. External Leakage. If a cylinder's end caps are leaking, tighten them. If the leaks still do not stop, replace the gasket. If a cylinder leaks around a piston rod, replace the packing. Make sure that a seal lip faces toward the pressure oil. If a seal continues to leak, check points e through I.
b. Internal Leakage. Leakage past the piston seals inside a cylinder can cause sluggish movement or settling under load. Piston leakage can be caused by worn piston seals or rings or scored cylinder walls. The latter may be caused by dirt and grit in the oil.
c. Creeping Cylinder. If a cylinder creeps when stopped in midstroke, check for internal leakage (point b). Another cause could be a worn control valve.
d. Sluggish Operation. Air in a cylinder is the most common cause of sluggish action. Internal leakage in a cylinder is another cause. If an action is sluggish when starting up a system, but speeds up when a system is warm, check for oil of too high a viscosity. If a cylinder is still sluggish after these checks, test the whole circuit for worn components.
e. Loose Mounting. Pivot points and mounts may be loose. The bolts or pins may need to be tightened, or they may be worn out. Too much slop or float in a cylinder's mountings damages the piston-rod seals. Periodically check all the cylinders for loose mountings.
f. Misalignment. Piston rods must work in-line at all times. If they are side-loaded, the piston rods will be galled and the packings will be damaged causing leaks. Eventually, the piston rods may be bent or the welds broken.
g. Lack of Lubrication. If a piston rod has no lubrication, a rod packing could seize, which would result in an erratic stroke, especially on single-acting cylinders.
h. Abrasives on a Piston Rod. When a piston rod extends, it can pick up dirt and other material. When it retracts, it carries the grit into a cylinder, damaging a rod seal. For this reason, rod wipers are often used at the rod end of a cylinder to clean the rod as it retracts. Rubber boots are also used over the end of a cylinder in some cases. Piston rods rusting is another problem. When storing cylinders, always retract the piston rods to protect them. If you cannot retract them, coat them with grease.
I. Burrs on a Piston Rod. Exposed piston rods can be damaged by impact with hard objects. If a smooth surface of a rod is marred, a rod seal may be damaged. Clean the burrs on a rod immediately, using crocus cloth. Some rods are chromeplated to resist wear. Replace the seals after restoring a rod surface.
j. Air Vents. Single-acting cylinders (except ram types) must have an air vent in the dry side of a cylinder. To prevent dirt from getting in, use different filter devices. Most are self-cleaning, but inspect them periodically to ensure that they operate properly.

NOTE: When repairing a cylinder, replace all the seals and packings before reassembly.
Trouble Shooting Guidelines
Cylinder failure can occur for many reasons. This cylinder Trouble Shooting Guideline can be used to analyze the potential reasons for cylinder failure and establish corrective actions

Symptom	Possible Causes	Remedies
Piston rod scored	Contamination of the oil Contamination of the gland bearing	Flush entire hydraulic system Change all filters
Cylinder bore scored	Contamination of the oil Piston bearing failure Damage cylinder barrel	Flush entire hydraulic system Change all filters Check piston head bearing Replace cylinder barrel
Bent piston rod	Operation problem: possible overload Outside impact Under specification of piston rod	Check operation parameters Increase rod specification
Split weld on base and ports	Shock loading Poor original weld	Check operation parameters Machine off \& re-weld correctly
Rod worn on one side	Lack of bearing support Too much side load Rod too small	Increase bearing area Change operation Increase rod size Incorporate external guides
Gland blown out	Possible intensification of internal pressure Threads worn Deformation of cylinder tube	Check hydraulic valve operation Check threads Check tube for ovality \& thread wear
Leaking from around the gland O.D.	o-ring failure cracked gland	Check clearances Fit back-up ring to o-ring Crack test gland
Piston rod pitting	Corrosion Piston rod damage	Upgrade to anti-corrosive material Specification. Protect rod from weather. Check rod for nicks or scratches that could cause seal damage or allow oil leakage.
Barrel internally corroded	Water in the oil	Change oil Protect from water ingress

TROUBLE SHOOTING

Symptom	Possible Causes	Remedies
Piston rod will not retract	Internal leakage Port blockage	Strip and inspect piston head \& tube Check ports and pipes for blockages Check valve operation
Regular seal leakage	Incorrect seals fitted Seal grooves corroded or marked Air trapped in the oil Incorrect metalwork clearances Contamination of the oil Seals fitted incorrectly Seal housing sizes incorrect Rod seal leaking corrosion Make sure the cylinder is bled correctly Check oil for contamination Check condition of all running surfaces	
Cylinder is getting hot	Rod	

General Notes

Maximum pressure - Microtact Hydraulic Cylinders are designed in accordance with standards for a dynamic continuous pressure of 160 bar for all mounting types. Under certain conditions, a higher pressure may be permitted. To confirm this , we require a detailed application, description on the basis of a technical data of a regenerative circuit or a meter-out throttle, pressure intensification must be taken into account.
Minimum pressure - Depending on the application, a certain minimum pressure is required to ensure correct operation of the cylinder. Under no-load condition, a minimum pressure of 10 bar is recommended for single rod cylinders. In the case of lower pressure, please consult us.

Installation of cylinder - The cylinder may only be installed or the piston rod end screwed into the machine part or into a selfaligning clevis while the cylinder is depressurized.

Hydraulic Cylinder Formula

Calculate	Formula	Symbolic
Cylinder area (In Sq. Inch)	Area $=\pi$ Radius ${ }^{2}$ (Inches)	Area $=\pi \mathrm{r}^{2}$
	Area $=(P / 4) \times$ Diameter ${ }^{2}$ (Inches)	$\mathrm{A}=\left(\pi D^{2}\right) / 4$ or $\mathrm{A}=0.785 \mathrm{D}^{2}$
Cylinder Force (In Pounds, Push or Pull)	Area=Pressure (psi) \times Net Area (sq. inch)	$F=p s i \times A$ or $F=P A$
Cylinder Velocity or Speed (In Feet/Second)	Velocity $=231 \times$ Flow Rate (GPM) $\div 12 \times 60 \times$ Net Area (sq. in.)	$\mathrm{V}=231 \mathrm{Q} \div 720 \mathrm{~A}$ or $\mathrm{V}=0.3208 \mathrm{Q} \div \mathrm{A}$
Cylinder Volume Capacity (In Gallons of Fluid)	Volume $=\pi \times$ Radius 2 (in) \times Stroke (in) $\div 231$	$V=\left(\pi r^{2} L\right) \div 231$
	Volume $=$ Net Area (sq. in) x stroke (in.) $\div 231$	$\mathrm{V}=(\mathrm{AL}) \div 231$
Cylinder Flow Rate (In Gallons / Minute)	Flow Rate $=12 \times 60 \times$ Velocity (Ft / Sec.) \times Net Area (sq. in.) / 231	$Q=(270 v A) 231$ or $Q=3.117 \mathrm{vA}$

Hydraulic Formulas

Horsepower:

Horsepower $=\frac{\text { GPM } \times \text { psi }}{1714}$

Torque:

Torque (lb. in.) $=\frac{\text { CUIN./REV. x psi }}{2}$
Torque (lb. in.) $=\frac{\mathrm{HP} \times 63025}{\text { RPM }}$

Flow:
Flow $(\mathrm{gpm})=\frac{\text { CU IN./REV. } \mathrm{x} \text { RPM }}{231}$

CONVERSION FACTORS:

$1 \mathrm{hp}=33,000 \mathrm{ft}$. lbs. per minute
$1 \mathrm{hp}=42.4$ btu per minute
$1 \mathrm{hp}=0.746 \mathrm{kwhr}$ (kilowatt hours)
1 U. S. gallon = 231 cubic inches .

Overall Efficiency :

Overall efficiency $=\frac{\text { OUTPUT HP }}{\text { INPUT HP }} \times 100$

Volumetric Efficiency:

Volumetric efficiency (pump) $=$
$\frac{\text { OUTPUT GPM }}{\text { THEORETICAL GPM }} \times 100$
$\frac{\text { THEORETICAL GPM }}{\text { INPUT GPM }} \times 100$

Pipe volume varies as the square of the diameter; volume in
gallons $=0.0034 \mathrm{D}^{2} \mathrm{~L}$
where: $\quad D=$ inside diameter of pipe in inches
$\mathrm{L}=$ length in inches.
Velocity in feet per second $=\frac{0.408 \times \text { flow (gpm) }}{\text { D2 }}$
where: $\mathrm{D}=$ inside diameter of pipe in inches.
Atmospheric pressure at sea level $=14.7 \mathrm{psi}$
Atmospheric pressure decreases approximately 0.41 psi for each one thousand feet of elevation up to 23,000 feet.

Pressure $(\mathrm{psi})=$ feet head $\times 0.433 \times$ specific gravity .
Specific gravity of oil is approximately 0.85 .
Thermal expansion of oil is approximately 1 cu . in. per 1 gal. per $10^{\circ} \mathrm{F}$ rise in temperature.

Practical hydraulic formulae

Geometric flow rate (1/min)
(pumps and motors)
Theoretical shaft torque (Nm)
(pumps and motors)
Shaft power (kW)

Hydraulic power (kW)

```
\(=\underline{\text { Geometric displacement }\left(\mathrm{cm}^{3} / r\right) \times \text { shaft speed }(r / m i n)}\)
                                    1000
\(=\) Geometric displacement \(\left(\mathrm{cm}^{3} / \mathrm{r}\right) \times\) pressure (bar)
                                    \(20 \pi\)
\(=\) Torque at shaft \((\mathrm{Nm}) \times\) shaft speed \((\mathrm{r} / \mathrm{min})\)
                                    9550
\(=\) Flow rate ( \(1 / \mathrm{min}\) ) x pressure (bar)
                                    600
=Flow rate ( \(/ / \mathrm{min}\) ) x pressure (bar)
                                    10
\(=\) Effective area \(\left(\mathrm{cm}^{2}\right) \times\) piston speed \((\mathrm{m} / \mathrm{min})\)
\(=\) Effective area \(\left(\mathrm{cm}^{2}\right) \times\) pressure (bar) x 10
\(=\frac{\text { Flow rate }(1 / \mathrm{min}) \times 21,22}{D^{2}}\)
where \(D=\) inside diameter of pipe in millimeters.
```


Conversion Factors

To convert \longrightarrow Into $\longrightarrow \square$ Multiply by				
Into <				
Unit	Symbol	Unit	Symbol	Factor
Atmospheres	Atm	bar	bar	1.013250
BTU / hour	Btu/h	kilowatts	kW	0.293071×10^{-3}
Cubic centimeters	cm^{3}	liters	L	0.001
Cubic centimeters	cm^{3}	milliliters	ml	1.0
Cubic feet	ft^{3}	cubic meters	m^{3}	0.0283168
Cubic feet	ft^{3}	litres	L	28.3161
Cubic inches	in^{3}	cubic centimeters	cm^{3}	16.3871
Cubic inches	in^{3}	liters	L	0.0163866
Degrees (angle)	${ }^{\circ}$	radians	rad	0.0174533
Fahrenheit	${ }^{0} \mathrm{~F}$	Celsius	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}=5\left({ }^{\circ} \mathrm{F}-32\right) / 9$
Feet	ft	meters	m	0.3048
Feet of water	$\mathrm{ftH}_{2} \mathrm{O}$	bar	bar	0.0298907
Fluid ounces. UK	Uk fl oz	cubic centimeters	cm^{3}	28.413
Fluid ounces. US	Us fl oz	cubic centimeters	cm^{3}	29.5735
Foot pounds f.	ft lbf	joules	J	1.35582
Foot pounds / minute	$\mathrm{ft} \mathrm{lbf} / \mathrm{min}$	watts	W	81.3492
Gallons. UK	UK gal	liters	L	4.54596
Gallons. US	US gal	liters	L	3.78531
Horsepower	hp	kilowatts	kW	0.7457
Inches of mercury	in Hg	millibar	mbar	33.8639
Inches of water	in $\mathrm{H}_{2} \mathrm{O}$	millibar	mbar	2.49089
Inches	in	centimeters	cm	2.54
Inches	in	millimeters	mm	25.4
Kilogramm force	kgf	newtons	N	9.80665
Kilogramm f. meter	kgf m	newton meters	Nm	9.80665
Kilogramm f./sq centimeter	kgf/cm ${ }^{2}$	bar	bar	0.980665
Kilopascals	kPa	bar	bar	0.01
Kilopound	kp	newtons	N	9.80665
Kilopound meters	kp m	newton meters	Nm	9.80665
Kilopound/square centimeter	$\mathrm{kp} / \mathrm{cm}^{2}$	bar	bar	0.980665
Microinches	in	microns	μm	0.0254
Millimetres of mercury	mm hg	millibar	mbar	1.33322
Millimeters of water	mm H	millibar	mbar	0.09806
Newtons/square centimeter	$\mathrm{N} / \mathrm{cm}^{2}$	bar	bar	0.1
Newtons/square meter	$\mathrm{N} / \mathrm{m}^{2}$	bar	bar	10^{-5}
Pascals (newtons/sq meter)	Pa	bar	bar	10^{-5}
Pounds (mass)	lb	kilograms	kg	0.4536
Pounds / cubic foot	$\mathrm{lb} / \mathrm{ft}^{3}$	kilograms/ cubic meter	$\mathrm{kg} / \mathrm{m}^{3}$	16.0185
Pounds / cubic inch	$\mathrm{lb} / \mathrm{in}^{3}$	kilograms/ cubic centimeter	$\mathrm{kg} / \mathrm{cm}^{3}$	0.0276799
Pounds force	Ibf	newtons	N	4.4822
Pounds f. feet	Ibf ft	newton meters	Nm	1.35582
Pounds f. inches	Ibf in	newton meters	Nm	0.112985
Pounds f. I square inch	lbf/in ${ }^{2}$	bar	bar	0.06894
Revolutions/minute	r/min	radians/second	$\mathrm{rad} / \mathrm{s}$	0.104720
Square feet	ft^{2}	square meters	m^{2}	0.092903
Square inches	in^{2}	square meters	m^{2}	6.4516×10^{-4}
Square inches	in ${ }^{2}$	square centimeters	cm^{2}	6.4516

Fluid power equipvalents
$1 \mathrm{bar}=10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{bar}=10 \mathrm{~N} / \mathrm{cm}^{2}=1 \mathrm{dN} / \mathrm{mm}^{2}$
1 pascal = $1 \mathrm{~N} / \mathrm{m}$
1 litre $=1000 \mathrm{Cm}^{3}$
1 centistoke $(\mathrm{cSt})=1 \mathrm{~mm}^{2} / \mathrm{S}$
1 joule = 1 wattsecond (Ws)
Hertz (Hz) = cycles/second

Prefixes denoting decimal multiples or sub-multiples
For multiples

$x 10^{12}$	tera	T
$\times 10^{9}$	giga	G
$\times 10^{6}$	mega	M
$\times 10^{3}$	kilo	k
$\times 10^{2}$	hecto	h
$\times 10$	deca	da

For submultiples

$\times 10^{-1}$	deci	d
$\times 10^{-2}$	centi	c
$\times 10^{-3}$	milli	m
$\times 10^{-6}$	micro	μ
$\times 10^{-9}$	nano	n
$\times 10^{12}$	pico	p
$\times 10^{-16}$	femto	f
$\times 10^{-18}$	atto	a

For Fluid Power Equipments And Systems

Lines	
Line, Working (Main)	
Line, Pilot (For Control)	- -
Line, Liquid Drain	------------
Hydraulic Flow, Direction of Pneumatic	\longrightarrow
Lines Crossing	
Lines Joining	\downarrow
Lines With Fixed Restriction	$\underset{\sim}{\sim}$
Line, Flexible	\cdots
Station, Testing, Measurement or Power Take-Off	\times
Variable Component (run arrow through symbol at 45^{0}	
Pressure Compensated Units (arrow parallel to short side of symbol)	
Temperature cause or Effect	-
Vented Reservoir Pressurized	
Line, To Reservoir Above Fluid Level Below Fluid Level	$\begin{aligned} & \downarrow \\ & 山 \end{aligned}$
Vented Manifold	I

Motors and Gylinders

Hydraulic Motor
Fixed
Displacement

Cylinder, Single Acting	Cles,
Cylinder, Double Acting	
Single End Rod	
Double End Rod	
Adjustable	
Cushion	
advance Only	
Differential	
Piston	

Miscellaneous Units

Electric Motor
Accumulator, Spring
Loaded
Accumulator, Gas
Charged
Cooler
Heater
Temperature
Controller
Filter, Strainer
Pressure Switch
Pressure Indicator
Temperature
Indicator
Component
Enclosure
Direction of Shaft
Rotation (assume
arrow on near side

o microtact

hydraulic
Microtact Hydraulic India Pvt. Ltd.
A.K. Estate, Veer Savarkar Flyover, S.V. Road, Goregaon (W), Mumbai - 400062 . India

